Determination of Insurance Policy Using Neural Networks and Simplified Models with Factor Analysis Technique

نویسندگان

  • YU-JU LIN
  • CHIN-SHENG HUANG
  • CHE-CHERN LIN
چکیده

In this paper, we use feed forward neural networks with the back-propagation algorithm to build decision models for five insurances including life, annuity, health, accident, and investment-oriented insurances. Six features (variables) were selected for the inputs of the neural networks including age, sex, annual income, educational level, occupation, and risk preference. Three hundred insurants from an insurance company in Taiwan were used as examples for establishing the decision models. Six experiments were conducted in this study. These experiments were mainly categorized into two phases: Phase 1 (Experiments 1 to 3) and Phase 2 (Experiments 4 to 6). In Phase 1, we used the six features as the inputs of the neural networks. In Phase 2, we employed the factor analysis method to select three more important features from the six features. In Phase 1, Experiment 1 used a single neural network to classify the five insurances simultaneously while Experimental 2 utilized five neural networks to classify them independently. Experiments 1 and 2 adopted the purchase records of primary and additional insurances as experimental data. Experiment 3, however, utilized the primary insurance purchase dada only. In Phase 2, we repeated the similar experimental procedure as Phase 1. We also applied statistical methods to test the differences of the classification results between Phases 1 and 2. Discussion and concluding remarks are finally provided at the end of this paper. Key-words: Insurance policy, Neural networks, Back-propagation algorithm, Classification, Factor analysis, Feature extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...

متن کامل

Artificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...

متن کامل

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

Determination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models

In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...

متن کامل

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008